首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1152篇
  免费   211篇
  国内免费   196篇
航空   928篇
航天技术   285篇
综合类   134篇
航天   212篇
  2024年   2篇
  2023年   16篇
  2022年   29篇
  2021年   38篇
  2020年   63篇
  2019年   74篇
  2018年   85篇
  2017年   62篇
  2016年   65篇
  2015年   57篇
  2014年   70篇
  2013年   79篇
  2012年   94篇
  2011年   103篇
  2010年   87篇
  2009年   79篇
  2008年   80篇
  2007年   72篇
  2006年   65篇
  2005年   69篇
  2004年   48篇
  2003年   38篇
  2002年   28篇
  2001年   23篇
  2000年   24篇
  1999年   12篇
  1998年   23篇
  1997年   10篇
  1996年   11篇
  1995年   7篇
  1994年   14篇
  1993年   4篇
  1992年   5篇
  1991年   8篇
  1990年   5篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
排序方式: 共有1559条查询结果,搜索用时 421 毫秒
991.
军用飞机推行综合保障工程的研究   总被引:1,自引:0,他引:1  
王祺瑞  石鹏 《飞机设计》2007,27(3):63-66
阐述了ILS的涵义及ILS在军用飞机形成战斗力中的重要作用,结合军用飞机实施ILS的现状,对大力推行军用飞机ILS的实施提出了几点建议。  相似文献   
992.
To achieve sustainable, healthy closed ecological systems requires solutions to challenges of closing the water cycle – recycling wastewater/irrigation water/soil medium leachate and evaporated water and supplying water of required quality as needed for different needs within the facility. Engineering Biosphere 2, the first multi-biome closed ecological system within a total airtight footprint of 12,700 m2 with a combined volume of 200,000 m3 with a total water capacity of some 6 × 106 L of water was especially challenging because it included human inhabitants, their agricultural and technical systems, as well as five analogue ecosystems ranging from rainforest to desert, freshwater ecologies to saltwater systems like mangrove and mini-ocean coral reef ecosystems. By contrast, the Laboratory Biosphere – a small (40 m3 volume) soil-based plant growth facility with a footprint of 15 m2 – is a very simplified system, but with similar challenges re salinity management and provision of water quality suitable for plant growth. In Biosphere 2, water needs included supplying potable water for people and domestic animals, irrigation water for a wide variety of food crops, and recycling and recovering soil nutrients from wastewater. In the wilderness biomes, providing adequately low salinity freshwater terrestrial ecosystems and maintaining appropriate salinity and pH in aquatic/marine ecosystems were challenges. The largest reservoirs in Biosphere 2 were the ocean/marsh with some 4 × 106 L, soil with 1 to 2 × 106 l, primary storage tank with 0 to 8 × 105 L and storage tanks for condensate and soil leachate collection and mixing tanks with a capacity of 1.6 × 105 L to supply irrigation for farm and wilderness ecosystems. Other reservoirs were far smaller – humidity in the atmosphere (2 × 103 L), streams in the rainforest and savannah, and seasonal pools in the desert were orders of magnitude smaller (8 × 104 L). Key technologies included condensation from humidity in the air handlers and from the glass space frame to produce high quality freshwater, wastewater treatment with constructed wetlands and desalination through reverse osmosis and flash evaporation were key to recycling water with appropriate quality throughout the Biosphere 2 facility. Wastewater from all human uses and the domestic animals in Biosphere 2 was treated and recycled through a series of constructed wetlands, which had hydraulic loading of 0.9–1.1 m3 day−1 (240–290 gal d−1). Plant production in the wetland treatment system produced 1210 kg dry weight of emergent and floating aquatic plant wetland which was used as fodder for the domestic animals while remaining nutrients/water was reused as part of the agricultural irrigation supply. There were pools of water with recycling times of days to weeks and others with far longer cycling times within Biosphere 2. By contrast, the Laboratory Biosphere with a total water reservoir of less than 500 L has far quicker cycling rapidity: for example, atmospheric residence time for water vapor was 5–20 min in the Laboratory Biosphere vs. 1–4 h in Biosphere 2, as compared with 9 days in the Earth’s biosphere. Just as in Biosphere 2, humidity in the Laboratory Biosphere amounts to a very small reservoir of water. The amount of water passing through the air in the course of a 12-h operational day is two orders of magnitude greater than the amount stored in the air. Thus, evaporation and condensation collection are vital parts of the recycle system just as in Biosphere 2. The water cycle and sustainable water recycling in closed ecological systems presents problems requiring further research – such as how to control buildup of salinity in materially closed ecosystems and effective ways to retain nutrients in optimal quantity and useable form for plant growth. These issues are common to all closed ecological systems of whatever size, including planet Earth’s biosphere and are relevant to a global environment facing increasing water shortages while maintaining water quality for human and ecosystem health. Modular biospheres offer a test bed where technical methods of resolving these problems can be tested for feasibility.  相似文献   
993.
Successful growth and development of higher plants in space rely on adequate availability and uptake of water and nutrients, and efficient energy distribution through photosynthesis and gas exchange. In the present review, literature has been reviewed to assemble the relevant knowledge within space plant research for future planetary missions. Focus has been on fractional gravity, space radiation, magnetic fields and ultimately a combined effect of these factors on gas exchange, photosynthesis and transport of water and solutes.  相似文献   
994.
针对工业控制领域中非线性系统控制,在基于梯度下降法的RBF网络PID整定的基础上,对整定算法作出改进,控制目标不再是使当前跟踪误差最小,而是使当前跟踪误差和下一时刻跟踪误差的平方和最小。实现过程为:先由RBF神经网络在线辨识被控对象离散模型,得到被控对象的Jacobian信息,采用梯度下降法对PID控制器参数进行初步整定;然后,将系统跟踪误差和PID参数输入支持向量机模型,通过回归预测系统下一时刻的误差,改进的整定算法利用预测误差信息对参数进行再整定。仿真结果表明,引入支持向量机回归优化的RBF神经网络PID整定收敛速度更快,精度更高,跟踪性能优于RBF神经网络PID整定。  相似文献   
995.
It is very important to recycle the inedible biomass of higher plants to improve the closure of bioregenerative life support system (BLSS). Processing candidate higher plant residues into the soil-like substrate (SLS) as the plant growth medium is a promising way to achieve. In this study, three different processing techniques of SLSs, using residues of wheat and rice as feedstock, were compared. As for the first traditional technique, SLS1 was obtained by successive conversion of wheat straw by oyster mushrooms and worms. In the other two methods, SLSs were produced with aerobic fermentation (SLS2) or anaerobic fermentation (SLS3) followed by worm conversion. The changes in SLS cellulose, lignin, available elements and pH were measured during the production processes. The maturity was evaluated by the value of C/N. The fertilities were compared in terms of available elements contents and lettuce productivities. The results indicated that the second technique was optimal, whose process cycle was 30 days less than that of SLS1. The total cellulose and lignin degradation of SLS2, achieved 98.6% and 93.1% during the 93-days-processing, and the lettuce productivity reached 12.0 g m−2 day−1.  相似文献   
996.
引入S1000D国际规范制作IETM,体现了装备全寿命信息管理(CALS)的思想。CSDB是S1000D规范的核心概念,所存储的技术信息能实现"一次生成、多次使用"的目标,存储有DM、PM等信息对象,负责信息对象的存储和管理工作。研究了基于CSDB的装备IETM技术,对加快装甲装备保障信息化建设的作用和意义重大。  相似文献   
997.
Temperature increases in plant reproductive organs such as anthers and stigmas could cause fertility impediments and thus produce sterile seeds under artificial lighting conditions without adequately controlled environments in closed plant growth facilities. There is a possibility such a situation could occur in Bioregenerative Life Support Systems under microgravity conditions in space because there will be little natural convective or thermal mixing. This study was conducted to determine the temperature of the plant reproductive organs as affected by illumination and air movement under normal gravitational forces on the earth and to make an estimation of the temperature increase in reproductive organs in closed plant growth facilities under microgravity in space. Thermal images of reproductive organs of rice and strawberry were captured using infrared thermography at air temperatures of 10–11 °C. Compared to the air temperature, temperatures of petals, stigmas and anthers of strawberry increased by 24, 22 and 14 °C, respectively, after 5 min of lighting at an irradiance of 160 W m−2 from incandescent lamps. Temperatures of reproductive organs and leaves of strawberry were significantly higher than those of rice. The temperatures of petals, stigmas, anthers and leaves of strawberry decreased by 13, 12, 13 and 14 °C, respectively, when the air velocity was increased from 0.1 to 1.0 ms−1. These results show that air movement is necessary to reduce the temperatures of plant reproductive organs in plant growth facilities.  相似文献   
998.
In this paper, the estimation capacities of MLR and ANN are investigated to estimate monthly-average daily SR over Turkey. The satellite data are used for 73 different locations over Turkey. Land surface temperature, altitude, latitude, longitude and month are offered as the input variables for modeling ANN and MLR to get SR. Estimations of SR are evaluated with the meteorological values by using the statistical bases. The obtained results indicated that the ANN model could achieve a satisfactory performance when compared to the MLR model. Moreover, it is understood that more accurate results in estimation of SR are obtained in the use of satellite data, rather than the use of meteorological station data. Finally, the built ANN model is used to estimate the yearly average of daily SR over Turkey. As a result, satellite-based SR map for Turkey is generated.  相似文献   
999.
浅谈构建部队后勤保障社会化顺畅高效运行机制   总被引:1,自引:0,他引:1  
部队后勤保障社会化取得的成效是有目共睹的,但是由于种种原因,部分单位还没有取得预期效果,本文尝试从部队后勤保障社会化中出现的矛盾人手,分析其产生的原因,提出构建顺畅高效社会化的运行机制的对策。  相似文献   
1000.
新疆敏捷性导弹为了获得更高的机动性、敏捷性和好的导引精度,许多采用推力矢量控制方案,本文讨论了一类带推力矢量控制导弹的数学建模,在此基础上提出了一种适用于此类新型导弹的模糊神经网络控制方案,采用双网络逆动态学控制结构,数字仿真表明所提出的控制方案对于系统内参数不确定性和非线性变化具有强的适应性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号